Perturbed damped pendulum: finding periodic solutions via averaging method
نویسندگان
چکیده
منابع مشابه
Perturbed damped pendulum: finding periodic solutions via averaging method
Using the damped pendulum model we introduce the averaging method to study the periodic solutions of dynamical systems with small non–autonomous perturbation. We provide sufficient conditions for the existence of periodic solutions with small amplitude of the non–linear perturbed damped pendulum. The averaging method provides a useful means to study dynamical systems, accessible to Master and P...
متن کاملOn the periodic solutions of a perturbed double pendulum
Abstract. We provide sufficient conditions for the existence of periodic solutions of the planar perturbed double pendulum with small oscillations having equations of motion θ̈1 = −2aθ1 + aθ2 + εF1(t, θ1, θ̇1, θ2, θ̇2), θ̈2 = 2aθ1 − 2aθ2 + εF2(t, θ1, θ̇1, θ2, θ̇2), where a and ε are real parameters. The two masses of the unperturbed double pendulum are equal, and its two stems have the same length l....
متن کاملA computer-assisted proof for stable/unstable behaviour of periodic solutions for the forced damped pendulum
From 15.11. to 20.11.2009, the Dagstuhl Seminar 09471 Computer-assisted proofs tools, methods and applications was held in Schloss Dagstuhl Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and...
متن کاملPrecise Asymptotic Behavior of Solutions to Damped Simple Pendulum Equations
We consider the simple pendulum equation −u′′(t) + f(u′(t)) = λ sinu(t), t ∈ I := (−1, 1), u(t) > 0, t ∈ I, u(±1) = 0, where 0 < ≤ 1, λ > 0, and the friction term is either f(y) = ±|y| or f(y) = −y. Note that when f(y) = −y and = 1, we have well known original damped simple pendulum equation. To understand the dependance of solutions, to the damped simple pendulum equation with λ 1, upon the te...
متن کاملAsymptotic Shape of Solutions to the Perturbed Simple Pendulum Problems
We consider the positive solution of the perturbed simple pendulum problem u′′(r) + N − 1 r u′(r)− g(u(t)) + λ sinu(r) = 0, with 0 < r < R, u′(0) = u(R) = 0. To understand well the shape of the solution uλ when λ 1, we establish the leading and second terms of ‖uλ‖q (1 ≤ q < ∞) with the estimate of third term as λ → ∞. We also obtain the asymptotic formula for uλ(R) as λ→∞.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Brasileira de Ensino de Física
سال: 2013
ISSN: 1806-9126,1806-1117
DOI: 10.1590/s1806-11172013000100014